Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emerg Microbes Infect ; 12(1): e2156814, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2160828

ABSTRACT

By December 2021, administration of the third dose of COVID-19 vaccinations coincided with the spread of the Omicron variant in Europe. Questions had been raised on protection against infection conferred by previous vaccination and/or infection. Our study population included 252,433 participants from the COVID-19 vaccination registry in Malta. Data were then matched with the national testing database. We collected vaccination status, vaccine brand, vaccination date, infection history, and age. Using logistic regression, we examined different combinations of vaccine dose, prior infection status and time, and the odds of infection during the period when the Omicron variant was the dominant variant in Malta. Participants infected with Sars-Cov-2 prior to the Omicron wave had a significantly lower odds of being infected with the Omicron variant. Additionally, the more recent the infection and the more recent the vaccination, the lower the odds of infection. Receiving a third dose within 20 weeks of the start of the Omicron wave in Malta offered similar odds of infection as receiving a second dose within the same period. Time since vaccination was a strong determinant against infection, as was previous infection status and the number of doses taken. This finding reinforces the importance of future booster dose provision especially to vulnerable populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Malta/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Adaptive Immunity
2.
JMIR Public Health Surveill ; 8(12): e37669, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2065306

ABSTRACT

BACKGROUND: In late 2020, the European Centre for Disease Prevention and Control and Epiconcept started implementing a surveillance system for severe acute respiratory infections (SARI) across Europe. OBJECTIVE: We sought to describe the process of digitizing and upgrading SARI surveillance in Malta, an island country with a centralized health system, during the COVID-19 pandemic from February to November 2021. We described the characteristics of people included in the surveillance system and compared different SARI case definitions, including their advantages and disadvantages. This study also discusses the process, output, and future for SARI and other public health surveillance opportunities. METHODS: Malta has one main public hospital where, on admission, patient data are entered into electronic records as free text. Symptoms and comorbidities are manually extracted from these records, whereas other data are collected from registers. Collected data are formatted to produce weekly and monthly reports to inform public health actions. From October 2020 to February 2021, we established an analogue incidence-based system for SARI surveillance. From February 2021 onward, we mapped key stakeholders and digitized most surveillance processes. RESULTS: By November 30, 2021, 903 SARI cases were reported, with 380 (42.1%) positive for SARS-CoV-2. Of all SARI hospitalizations, 69 (7.6%) were admitted to the intensive care unit, 769 (85.2%) were discharged, 27 (3%) are still being treated, and 107 (11.8%) died. Among the 107 patients who died, 96 (89.7%) had more than one underlying condition, the most common of which were hypertension (n=57, 53.3%) and chronic heart disease (n=49, 45.8%). CONCLUSIONS: The implementation of enhanced SARI surveillance in Malta was completed by the end of May 2021, allowing the monitoring of SARI incidence and patient characteristics. A future shift to register-based surveillance should improve SARI detection through automated processes.


Subject(s)
COVID-19 , Influenza, Human , Humans , Pandemics , SARS-CoV-2 , Influenza, Human/epidemiology , COVID-19/epidemiology , Malta/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL